BiokraftstoffeFachagentur Nachwachsende Rohstoffe e. V.

 

Projekte

Verbundvorhaben: Gemischbildung und Verbrennung von Alkoholen und anderer biogener Kraftstoffe in mischungskontrollierten Brennverfahren; Teilvorhaben 2: Numerische Untersuchung von Gemischbildung und Verbrennung biogener Kraftstoffe - Akronym: MiFoCo-bio

Anschrift
Technische Universität Darmstadt
Karolinenplatz 5
64289 Darmstadt
Projektleitung
Prof. Dr.-Ing. Christian Hasse
Tel: +49 6151 1624142
E-Mail schreiben
FKZ
2220NR021B
Anfang
01.10.2020
Ende
30.06.2023
Ergebnisverwendung
IIn diesem Teilvorhaben wurden komplexe Phasengleichgewichte in die Simulationsumgebung integriert. Hierzu wurde die Methodik für die Tabellierung experimentell und numerisch bestimmter Phasengleichgewichte implementiert. Damit steht eine Methodik für komplexe thermophysikalische Eigenschaften von biogenen Dieselkraftstoffen in der Simulationsumgebung bereit. Mit Hilfe der gemessenen thermophysikalischen Eigenschaften und eines Optimierungstools wurde ein Surrogat für HVO identifiziert, dass sowohl die Gemischbildung, als auch die Verbrennung sehr gut beschreiben kann. Die Grobstruktur Spraysimulationen unter inerten Bedingungen zeigten eine exzellente Übereinstimmung mit den experimentellen Messungen. Anhand der detaillierten Simulationsdaten konnten komplexe Gemischbildungsprozesse für biogene Kraftstoffe und verschiedene Spritzlochdurchmesser identifiziert werden. Darüber hinaus liefern die Simulationen wichtige Informationen, wie z.B. Temperaturverteilungen im Spray, die im Experiment nicht zugänglich sind. Für die reaktiven Spraysimulationen wurden geeignete Reaktionsmechanismen für HVO und 1-Oktanol identifiziert und getestet. Eine Neuheit im Projekt ist die detaillierte Bestimmung der Temperaturverteilung aus den inerten Spraysimulationen. Besonders für biogene Kraftstoffe hat die Verdunstungskälte einen signifikanten Einfluss auf das Zündverhalten. Auch für konventionelle Kraftstoffe wie n-Dodekan als Referenzkraftstoff wurde ein Einfluss für große Spritzlochdurchmesser bzw. eingespritzte Masse beobachtet. Mit diesen Informationen wurde ein Verbrennungsmodell entwickelt, dass die Verdunstungskälte berücksichtigt, dass die Modellgüte deutlich verbessert. Zuletzt wurde eine Potentialstudie zu "Dual-Fuel" Verfahren erfolgreich durchgeführt. Hierzu wurde ein Verbrennungsmodell auf Basis des tabellierte Chemieansatz entwickelt, bei dem sowohl die vorgemischte Verbrennung des Hintergrundgemisches sowie die Diffusionsflamme des Zündstrahls beschrieben werden kann.
Aufgabenbeschreibung
Ziel dieses Teilvorhabens ist die Aufklärung der physikalischen Zusammenhänge entlang der motorischen Wirkkette: Einspritzung ¿ Gemischbildung ¿ Verbrennung anhand experimenteller Daten in Kombination mit den Ergebnissen numerischer Simulationen. Mit Hilfe der numerischen Simulation werden in steigender Komplexität die Prozesse entlang der Wirkkette betrachtet. Dies ermöglicht gekoppelte Vorgänge detailliert untersuchen zu können. Dieser systematische Ansatz führt am Ende zu einer Gesamtbetrachtung der physikalischen und chemischen Wirkmechanismen. Da die korrekte Beschreibung des Phasengleichgewichtes an der Grenzfläche einen wesentlichen Einfluss auf das Verdampfungsverhalten haben kann, werden die experimentell bestimmten Ergebnisse der Reinstoff- und Gemischphasenthermodynamik an die bestehenden Spraymodelle von Mehrkomponentenmischungen gekoppelt. Hierdurch können hochgenaue 3D-CFD Simulation der Gemischbildung durchgeführt werden. Aufbauend auf den Messungen in der Hochdruckkammer liefern inerte Spraysimulationen einen tieferen Einblick auf die Einspritzung und Gemischbildung der biogenen Kraftstoffe, wodurch ein vertieftes Verständnis der experimentellen Erkenntnisse bzgl. Verdampfung und Gemischbildung von Hochdrucksprays alternativer Kraftstoffe geleistet werden kann. Darauf aufbauend wird in reaktiven Simulationen die Zündung betrachtet. Damit kann eine Analyse der komplexen Wirkzusammenhänge zwischen Gemischbildung und anschließender Verbrennung erfolgen. Dieses Arbeitspaket ist von zentraler Bedeutung für die Quantifizierung des Potentials alternativer Kraftstoffe zur Schadstoffreduktion. Abschließend wird eine Potentialstudie für sogenannte "Dual-Fuel" Verfahren durchgeführt. Hierbei liegt der Fokus darauf aufbauend auf dem im Projekt verwendeten tabellierte Chemieansatz ein Verbrennungsmodell für vorgemischte und nicht-vorgemischte Verbrennung im Dual-Fuel Verfahren zu entwickeln.

neue Suche